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S. Charzýnskia, J. Kijowskia, G. Rudolphb, M. Schmidtb,∗
a Center for Theoretical Physics, Polish Academy of Sciences, al. Lotnik´ow 32/46, 02-668 Warsaw, Poland

b Institut für Theoretische Physik, Universit¨at Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany

Received 29 September 2004; accepted 3 December 2004
Available online 11 January 2005

Abstract

The stratified structure of the configuration spaceGN = G× · · · ×G reduced with respect to the
action ofGby inner automorphisms is investigated forG = SU(3). This is a finite dimensional model
coming from lattice QCD. First, the stratification is characterized algebraically, for arbitraryN. Next,
the full algebra of invariants is discussed for the casesN = 1 andN = 2. Finally, forN = 1 andN = 2,
the stratified structure is investigated in some detail, both in terms of invariants and relations and in
more geometric terms. Moreover, the strata are characterized explicitly using local cross sections.
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1. Introduction

If one wants to analyze the non-perturbative structure of gauge theories, one should
start with clarifying basic structures like that of the field algebra, the observable algebra
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and the superselection structure of the Hilbert space of physical states. It is clear that the
standard Doplicher–Haag–Roberts theory[1,2] for models, which do not contain massless
particles, does not apply here. Nonetheless, there are interesting partial results within the
framework of general quantum field theory both for quantum electrodynamics (QED) and
for non-abelian models, see[3–6].

To be rigorous, one can put the system on a finite lattice, leaving the (extremely compli-
cated task) of constructing the full continuum limit, for the time being, aside. This way, one
gets rid of complicated functional analytical problems, but the gauge theoretical problems
one is interested in are still present within this setting. For basic notions concerning lattice
gauge theories (including fermions) we refer to[7] and references therein. Our approach is
Hamiltonian, thus, we put the model on a finite (regular) cubic lattice. In this context, we
have formulated (and in the meantime partially solved[8–12]) the following programme:

1. Describe the field algebraAΛ in terms of generators and defining relations and endow
it with an appropriate functional analytical structure.

2. Describe the observable algebraOΛ (algebra of gauge invariant operators, fulfilling the
Gauss law) in terms of generators and relations.

3. Analyze the mathematical structure ofOΛ and endow it with an appropriate functional
analytical structure.

4. Classify all irreducible representations ofOΛ.
5. Investigate dynamics in terms of observables.

Finally, of course, one wants to construct the continuum limit. As already mentioned,
in full generality, this is an extremely complicated problem of constructive field theory.
However, the results obtained until now suggest that there is some hope to control the
thermodynamical limit, see[8] for a heuristic discussion. We also mention that for simple
toy models, these problems can be solved, see[14].

In [12,13] we have started to investigate the structure of the field and the observable
algebra of lattice QCD. In these papers we took the attitude of implementing the constraints
on the quantum level. It is well known that there is another possibility: first, one reduces the
classical phase space and then one formulates the quantum theory over this reduced phase
space. Since the action of the gauge group can have several orbit types, the first step has to be
done using singular Marsden–Weinstein reduction[19]. Then the reduced phase space has
the structure of a stratified symplectic space. Quantization procedures for such spaces have
been worked out recently or are still under investigation[20]. As an important ingredient
for both reduction and quantization, in this paper, we study the stratified structure of the
reduced classical configuration space. For QCD on a finite lattice, this is given by the orbit
space of the action of SU(3) on SU(3)N = SU(3)× · · · × SU(3) by inner automorphisms.

Our paper is organized as follows: inSection 2we give a precise formulation of the
problem and we discuss the basic tools used in this paper. InSection 3, the stratification
of the reduced configuration space is characterized algebraically for arbitraryN. Next, in
Section 4the full algebra of invariants is discussed for the casesN = 1 andN = 2. Finally,
in Sections 5 and 6the stratified structure is investigated forN = 1 andN = 2 in some
detail, both in terms of invariants and relations and in more geometric terms. Moreover, the
strata are characterized explicitly using local cross sections.
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2. Basics

We consider QCD on a finite regular cubic latticeΛ in the Hamiltonian framework. In
this context, the classical gluonic potential is approximated by its parallel transporter:

Λ1 � (x, y) → g(x,y) ∈ G,

whereG = SU(3) andΛ1 denotes the set of one-dimensional elements (links) ofΛ. Thus,
the classical configuration spaceC(x,y) over a given link (x, y) is isomorphic to the group
manifoldG and the classical phase space over (x, y) is isomorphic to

T ∗G ∼= g∗ ×G.

Thus, the (gluonic) lattice configuration space is given by

CΛ =
∏

(x,y)∈Λ1

C(x,y). (2.1)

It is obviously isomorphic to the product

GL := G× · · · ×G︸ ︷︷ ︸
L

,

with L denoting the number of lattice links. The corresponding phase space is a product of
phase spaces of the above type. Gauge transformations act on parallel transporters by

g(x,y) 	→ g′(x,y) = gx · g(x,y) · g−1
y ,

with

Λ0 � x 	→ gx ∈ G

andΛ0 denoting the set of zero-dimensional elements (sites) ofΛ. These transformations
induce transformations of the phase space over (x, y). Thus, the lattice gauge group is given
by

GΛ =
∏
x∈Λ0

Gx, (2.2)

with everyGx being a copy ofG.
The above symmetry can be easily reduced using the following technique: we choose a

lattice tree, which consists of a fixed lattice point (root)x0 and a subset ofΛ1 such that for
every lattice sitex there is a unique lattice path fromx to x0. Now, we can fix the gauge on
every on-tree link and we can parallel transport every off-tree configuration variable to the
pointx0. This can be viewed as a reduction with respect to the pointed lattice gauge group
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G0
Λ =

∏
x0 �=x∈Λ0

Gx. (2.3)

We end up with a partially reduced configuration space being isomorphic toGN , with N
denoting the number of off-tree links. The corresponding phase space is given by the cotan-
gent bundleT ∗GN . The reduced gauge group isGx0 ≡ G, acting via inner automorphisms
G � g 	→ Adg ∈ Aut(GN ):

Adg(g1, . . . , gN ) = (g · g1 · g−1, g · g2 · g−1, . . . , g · gN · g−1).

Thus, we have a finite dimensional Hamiltonian system with symmetry groupG. Since this
action has several orbit types, quantization turns out to be a complicated task. Usually, the
non-generic strata occurring here are omitted. If one wants to include them consistently,
one has to develop a quantum theory over a stratified set. One option to do this is to
perform quantization after reduction, i.e., to quantize the reduced phase space ofGN . This
is a stratified symplectic space which is constructed fromT ∗GN by singular Marsden–
Weinstein reduction[19]. By properly implementing the tree gauge on the level of the
phase space, it can be shown that this space is isomorphic, as a stratified symplectic space,
to the reduced phase space of the full lattice gauge theory[18]. This completely justifies
the use of the tree gauge in this approach. The reduced phase space ofGN is a bundle over
the reduced configuration space

ĈΛ ∼= GN/AdG. (2.4)

In this work, we investigatêCΛ for N = 1 and 2.
Our strategy is as follows:

(i) It is well known that orbit types of the action of a Lie groupG on a manifoldM
are classified by conjugacy classes of stabilizers [Gm], m ∈ M, of the group action.
Moreover, the orbit of an elementm is diffeomorphic toG/Gm. Thus, inSection 3,
we list the orbit types by calculating their stabilizers. This is done forarbitrary N.
Moreover, all orbit types will be characterized algebraically, in terms of properties of
eigenvectors and eigenvalues of representatives.

(ii) Next, in order to investigate the geometric structure ofĈΛ, we make use of basic facts
from invariant theory. According to[16], if we have an action of a Lie groupG on
a manifoldM with a finite number of orbit types, then the orbit space of this action
can be characterized as follows: let (ρ1 · · · ρp) be a set of generators of the algebra of
invariant polynomials of theG-action onM. They define a mapping

ρ = (ρ1 · · · ρp) : M −→ R
p,

which induces a homeomorphism of the orbit spaceX := M/G onto the image ofρ in
R

p. Next, restricting our attention to the case ofG being an (n× n)-matrix group and
M = GN , we can use general results as developed in[15]: the algebra of polynomials,
which are invariant under simultaneous conjugation ofN matrices is generated by
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traces of products of these matrices,

GN � (g1, . . . , gN ) 	→ tr(gi1gi2 · · · gik ) ∈ C, (2.5)

with k ≤ 2n − 1. Moreover, for Gl(n,R), the full set of relations between generators
is given by the so-called fundamental trace identity∑

σ∈Sn+1

sgn(σ) ·
∏

(i1,...,ij)

tr(gi1 · · · gij ) = 0, (2.6)

where (i1, . . . , ij) ranges over the set of all cycles of the cycle decomposition of the
permutationσ. In the case under consideration,G = SU(n), we have two additional
relations induced from the two invariant tensors of SU(n), see[21],

tr(gg†) = n, (2.7)

det(g) = 1. (2.8)

Relations(2.7) and (2.8)imply the following form of the characteristic polynomial of
g ∈ G = SU(3):

χg(λ) = λ3− tr(g)λ2+ tr(g)λ− 1. (2.9)

The above listed facts enable us to characterize the configuration space in terms of
invariant generators and relations. First, inSection 4, we investigate the algebra of
invariants and their relations. Next, inSections 5 and 6.1we study the mappingρ
in some detail. ForN = 1 we solve the problem completely, that means we find the
range ofρ and characterizêCΛ as a compact subset ofR

2. ForN = 2, we will find a
unique characterization of each orbit type in terms of invariants. But to find the range
of ρ, defined in terms of a number ofinequalitiesbetween invariants, turns out to be
a complicated problem. Therefore, this will be discussed in a separate paper, see[22].
There, we will present a complete topological characterization ofĈΛ for N = 2 as a
CW-complex.

(iii) We present a somewhat detailed geometric characterization of all occurring strata in
terms of subsets and quotients of SU(3), seeSection 6.2.

(iv) Using a principal bundle atlas of SU(3), viewed as an SU(2)-bundle overS5, we
construct representatives of orbits for all occurring strata, seeSection 6.3.

3. The stratification of the configuration space

First, let us consider the caseN = 1.

Theorem 3.1. The adjoint action ofSU(3)onG1 ≡ SU(3)has three orbit types, corre-
sponding to three conjugacy classes of stabilizers of dimensions2, 4 and8, respectively.
The orbit spaceG1/AdSU(3) decomposes into three strata characterized by the following
conditions:
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(1) If g has three different eigenvalues then its stabilizer isU(1)× U(1) and g belongs to
the generic stratum.

(2) If g has two different eigenvalues then its stabilizer isU(2).
(3) If g has only one eigenvalue then it belongs to the centreZ and its stabilizer isG =

SU(3).

Proof. Up to conjugacy, we may assume thatg = diag(λ1, λ2, λ3). In case 1, theλi are
pairwise distinct. Hence, the stabilizer ofg is

Hg = {diag(α, β, γ)|α, β, γ ∈ U(1), α · β · γ = 1} ∼= U(1)× U(1). (3.1)

In case 2, up to conjugacy,λ1 �= λ2 = λ3. Then the stabilizer ofg is

Hg =


 (detV )−1

V


∣∣∣∣∣∣∣V ∈ U(2)

 ∼= U(2). (3.2)

In case 3,λ1 = λ2 = λ3, i.e.,g is a multiple of the identity. Hence, its stabilizer isG =
SU(3). Finally, it is clear that cases 1–3 exhaust all possible values of theλi. �

Next, we deal with the general case.

Theorem 3.2. The adjoint action ofSU(3) on GN , N ≥ 2, has five orbit types, corre-
sponding to five conjugacy classes of stabilizers of dimensions0, 1, 2, 4and8, respectively.
The orbit spaceGN/AdSU(3) decomposes into five strata characterized by the following
conditions. Denoteg := (g1, . . . , gN ).

1. If g1, . . . , gN have no common eigenspace then the stabilizer ofg is Hg = Z and g
belongs to the generic stratum.

2. If g1, . . . , gN have exactly one common one-dimensional eigenspace thenHg ∼= U(1).
3. If g1, . . . , gN have three(different) common(one-dimensional) eigenspaces thenHg ∼=

U(1)× U(1).
4. If g1, . . . , gN have a common two-dimensional eigenspace thenHg ∼= U(2).
5. If g1, . . . , gN have a three-dimensional common eigenspace, i.e., if they all are propor-

tional to the identity thenHg = G = SU(3).

Proof. If there are two eigenvectorse1 ande2, common for all matricesg1, . . . , gN , then
also their vector producte1× e2 is a common eigenvector. Ife1 ande2 are not orthogonal,
then the two-dimensional spaceP spanned by them is a common eigenspace. This means
that the pair (e1, e2) can be replaced by any orthonormal basis ofP. This implies that ifg
is not of type 1 or 2, its elements can be jointly diagonalized. We conclude that the above
types exhaust all possible cases.

Next we calculate the stabilizer for each case.

1. Assume that the stabilizer ofgcontains an elements �∈ Z. Thenshas at least two different
eigenvalues. One of these must be non-degenerate. Since the corresponding eigenspace
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is left invariant by allgi and since it is one-dimensional, it is an eigenspace of allgi, in
contradiction to the assumption.

2. Since thegi have a common eigenvectore1, up to conjugacy, we may assume that

gi =

ai 0

0 Bi

 ,

whereBi ∈ U(2). ThenHg contains the subgroup
α 0

0 β1


∣∣∣∣∣∣∣α, β ∈ U(1), β2 = ᾱ

 ∼= U(1). (3.3)

Conversely, lets ∈ Hg. Since the common eigenspace of thegi is one-dimensional,e1
is also an eigenvector ofs. Then

s =

α 0

0 A

 ,

whereA ∈ U(2). Again up to conjugacy, we may assume thatA = diag(β, γ). If β �= γ

then theBi must also be diagonal, because they commute withA. Then thegi have more
than one common eigenspace, which contradicts the assumption. Henceβ = γ andHg
coincides with the subgroup(3.3).

3. Choose a basis inC3, which jointly diagonalizes all the matricesg1, . . . , gN ,

gi =

ai 0 0

0 bi 0

0 0 ci

 .

The non-existence of a two-dimensional eigenspace means that none among the three
equationsai = bi, bi = ci andci = ai, is fulfilled for all i. This implies that any ma-
trix which commutes with all matricesg1, . . . , gN must be diagonal, too. Whence, the
stabilizerHg is of the form(3.1).

4. The orthogonal complement of the two-dimensional common eigenspace of thegi is a
one-dimensional common eigenspace. Thus, up to conjugacy,

gi =

ai 0

0 bi1


andHg contains the subgroup(3.2). Conversely, lets ∈ Hg. The non-existence of a
three-dimensional eigenspace means that there isi0 such thatai0 �= bi0. Then
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s =

 (detV )−1 0

0 V

 ,

with V ∈ U(2). Whence,Hg coincides with the subgroup(3.2).
5. In this case, all matricesg1, . . . , gN belong toZ, so the statement is obvious.�

Observe that types 1 and 3 may be uniquely characterized as follows.

Corollary 3.3.

1. The matricesg1, . . . , gN have no common eigenvector if and only if there exists a pair
(gi, gj) or a triple (gi, gj, gk) of elements not possessing any common eigenvector.

2. Suppose thatg1, . . . , gN have three(different) common(one-dimensional) eigenspaces.
There does not exist a common two-dimensional eigenspace if and only if there exists an
elementgi with three different eigenvalues or a pair(gi, gj) such that each of its elements
has exactly two different eigenvalues and non-degenerate eigenvalues correspond to
different eigenvectors.

Proof.

1. If there exists a pair (gi, gj) or a triple (gi, gj, gk) having no common eigenvector then,
obviously, there is no common eigenvector for all of them. Conversely, assume that every
triple (gi, gj, gk) has a common eigenvector. We prove that in this case there exists a
common eigenvector for all matricesg1, . . . , gN . First, observe that it is sufficient to
consider the case when none of the matricesg1, . . . , gN is fully degenerate (i.e.gi /∈ Z).
This means that everygi has at least two different eigenvalues.

The proof goes via induction: forK ≥ 3 we show that if any subset ofgofK elements
has a common eigenvector, then the same is true for any subset ofK + 1 elements.
Thus, take a subset (g1, . . . , gK+1). For eachi = 1, . . . , K + 1, skipgi and choose a
common eigenvectorvi of the remaining set ofK elements. If there existi �= j such
that vi andvj are parallel then they both are common eigenvectors ofg1, . . . , gK+1.
Otherwise, there existi �= j such thatvi andvj are not orthogonal, because there cannot
be more than 3 mutually orthogonal vectors inC

3. Suppose thatvK andvK+1 is such a
pair. It spans a two-dimensional subspaceP ⊂ C

3. SincevK, vK+1 are common, non-
orthogonal eigenvectors ofg1, . . . , gK−1, P is a common eigenspace of these elements.
Now considerv1. Since it is an eigenvector ofg2 and since, by assumption,g2 is not
proportional to the identity,v1 must either belong toP or be orthogonal toP. But
in both cases it is also an eigenvector ofg1 and, therefore, a common eigenvector of
g1, . . . , gK+1.

2. In this case all matricesg1, . . . , gN can be jointly diagonalized. If one of them has
three different eigenvalues (i.e., it has no two-dimensional eigenspace), then there is no
common two-dimensional eigenspaceP for all of them. Suppose that this is not the case,
i.e., that everygi has a two-dimensional eigenspacePi. There will be nocommontwo-
dimensional eigenspace if and only if there existi, j such thatPi �= Pj. Then also the non-
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degenerate eigenspacesQi andQj of gi andgj do not coincide, because they are given
by the orthogonal complements ofPi andPj, respectively. Hence, the decomposition of
C

3 into common eigenspaces ofgi andgj isQi ⊕Qj ⊕ Pi ∩ Pj. �

4. The algebra of invariants

In this section, we analyze the algebra of invariants forN = 1 andN = 2. We start with
invariant monomials built from one matrix.

Lemma 4.1. The invariantstr(gi) can be uniquely expressed in terms oftr(g), for any
integer i.

Proof. Recall formula(2.9) for the characteristic polynomial ofg ∈ SU(3):

χg(λ) = λ3− tr(g)λ2+ tr(g)λ− 1.

Thus, by the Cayley–Hamilton theorem, we have

g3− tr(g)g2+ tr(g)g− 1 = 0. (4.1)

Multiplying both sides of(4.1)by g−1 we obtain:

g2− tr(g)g+ tr(g)− g−1 = 0. (4.2)

Taking the trace of both sides we get

tr(g2) = (tr(g))2− 2tr(g). (4.3)

Analogously, multiplying(4.1) by gi, i ≥ 1 and taking the trace one gets formulae for
tr(gi+2) in terms of traces of tr(gi+1), tr(gi) and tr(g). So by induction tr(gi) is uniquely
given by tr(g). For negativei, the statement now follows from2.7. �

So in caseN = 1, the algebra of invariant polynomials has only two generators: the real
and imaginary parts of tr(g). The caseN = 2 is more complicated. Its characterization in
terms of invariant generators will be given inTheorem 4.4.

Lemma 4.2. The invariantstr(gihj) can be uniquely expressed in terms of the following
set of independent invariants:

{tr(g), tr(h), tr(gh), tr(g2h)}. (4.4)

Proof. First, substitutingg→ gh in (4.2)and multiplying both sides byg−1 to the left we
get:

hgh− tr(gh)h+ tr(gh)g−1− (ghg)−1 = 0. (4.5)

Taking the trace of both sides yields:

tr(gh2)− tr(gh)tr(h)+ tr(gh)tr(g)− tr(g2h) = 0. (4.6)
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Thus, from five traces occurring in this equation only four are independent. In what follows,
we express tr(gh2) in terms of the set

{tr(g), tr(h), tr(gh), tr(g2h)}.

Multiplying (4.1)by hgi and taking the trace we obtain

tr(hgi+3)− tr(g)tr(hgi+2)+ tr(g)tr(hgi+1)− tr(hgi) = 0. (4.7)

This equation enables us to express tr(hgi+3) in terms of tr(hgi+2), tr(hgi+1) and tr(hgi),
so by induction it can be expressed in terms of tr(hg2), tr(hg), tr(h) and tr(g).

Starting now from an arbitrary invariant of the form tr(gihj), we can use the above proce-
dure recursively. First, we lower the poweri of gand then we lower the powerj of h. We end
up with invariants of the form tr(hmgl), with k ≤ 2, l ≤ 2. So, to finish the proof it is suffi-
cient to express tr(g2h2) in terms of the set(4.4). For that purpose, we use the fundamental
trace identity(2.6) for k = 4. Substitutingg1 = g2 = g, g3 = g4 = h we obtain:

tr2(g)tr2(h)− 4tr(hg)tr(g)tr(h)− tr2(g)tr(h2)− tr(g2)tr2(h)+ 2tr2(hg)

+4tr(g)tr(h2g)+ tr(h2)tr(g2)+ 4tr(h)tr(hg2)− 2tr(hghg)− 4tr(h2g2) = 0.

(4.8)

Using equation(4.3)we get

tr(hghg) = tr((hg)2) = tr2(hg)− 2tr(hg).

This way we obtain a formula for tr(h2g2) in terms of invariants(4.4). �

Lemma 4.3. The invariantstr(h2g2hg) andtr(h2ghg2) have the following properties:

1. The sumtr(h2g2hg)+ tr(h2ghg2) can be expressed as a polynomial in invariants of
orderk ≤ 5,

2. Re(tr(h2g2hg)− tr(h2ghg2)) = 0,
3. tr(h2g2hg)− tr(h2ghg2) = 1

3tr((hg− gh)3) = det(hg− gh),
4. The invariant(tr(h2g2hg)− tr(h2ghg2))2 can be expressed as a polynomial in the in-

variants(4.4)and their complex conjugates.

Proof.

1. Using the fundamental trace identity(2.6) for k = 4 andg1 = hgh, g2 = g, g3 = h,
g4 = g we obtain:

2tr(h2ghg2)+ 2tr(h2g2hg)+ 2tr(hghghg)

= tr(h2g)tr(g)2tr(h)− 2tr(hghg)tr(g)tr(h)− 2tr(h2g)tr(g)tr(hg)

− tr(h2g)tr(h)tr(g2)− tr(h3g)tr(g)2+ 2tr(hghg)tr(hg)+ 4tr(h2ghg)tr(g)

+2tr(h2g)tr(hg2)+ tr(h3g)tr(g2)+ 2tr(hghg2)tr(h). (4.9)
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On the left-hand side of this equation there are invariants of order 6, and on the right-
hand side all the invariants are of lower order. ByLemma 4.1, we express tr(hghghg) as
follows:

tr(hghghg) = tr((hg)3) = tr3(hg)− 3tr(hg)tr(hg)+ 3.

Moving it to the right-hand side yields the statement.
2. By substitutingg→ gh, h→ hg in (4.5)we obtain:

tr(h2ghg2)− tr(h2g2)tr(hg)+ tr(h2g2)tr(hg)− tr(h2g2hg) = 0.

Taking the real part yields:

Re(tr(h2ghg2))− Re(tr(h2g2hg)) = 0.

3. The first equality is obtained by expanding the right-hand side. The second one follows
from the formula for the determinant of a 3× 3-matrixA in terms of traces,

det(A) = 1
3tr(A3)− 1

2tr(A2)tr(A)+ 1
6tr(A)3.

Nevertheless, it can be checked by direct computation.
4. The explicit formula expressing this invariant in terms of invariants(4.4)is lengthy and,

therefore, we give it inAppendix B, including some remarks how to derive it.�

Theorem4.4. Any functiononG2 = G×G invariantwith respect to theadjoint actionofG
can be expressed as a polynomial in the following invariants and their complex conjugates:

T1(g, h) := tr(g), T2(g, h) := tr(h), T3(g, h) := tr(hg),

T4(g, h) := tr(hg2), T5(g, h) := tr(h2g2hg)− tr(h2ghg2). (4.10)

Moreover, for given values ofT1, . . . , T4, there are at most two possible values ofT5.

Proof. First we observe that using Eq.(4.2)we can expressg−1 in terms of positive powers
of g and tr(g). This implies that every invariant can be expressed as a polynomial in traces
of products of only positive powers of matricesg andh.

From the general theory[15] we know that we can restrict ourselves to invariants of order
k ≤ 2n − 1= 7. By Lemmas 4.1 and 4.2, all invariants of the type tr(gk), tr(hk), tr(higj)
can be expressed in terms ofT1, T2, T3, T4. Observe that all invariants of orderk ≤ 3 are of
this type. In what follows we list invariants of orderk ≤ 7 which are not of this type, and
for each orderkwe present the method of expressing it in terms of invariants of lower order
andTi.

• k = 4: tr(hghg). By Lemma 4.1, we have tr(hghg) = tr((hg)2) = tr2(hg)− 2tr(hg).
• k = 5: tr(hghg2), tr(h2ghg). Substitutingh→ hg in (4.6)we obtain:
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tr(g2hgh) = tr(g · hg · hg) = tr(g · hg)tr(hg)− tr(g · hg)tr(g)+ tr(g2 · hg).

Analogously we deal with tr(h2ghg).
• k = 6: tr(h3ghg), tr(g3hgh), tr(h2g2hg), tr(h2ghg2), tr(hghghg). The invariant

tr(hghghg) = tr((hg)3) can be expressed in terms of tr(hg) by Lemma 4.1. Next, by
Lemma 4.2, we can reduce the power in tr(h3 · ghg) and express it in terms of tr(h2 · ghg)
and other invariants of lower order. (More precisely, we substituteh→ ghg into Eq.(4.7)
for i = 0.) We deal with tr(g3hgh) analogously. Next, we rewrite tr(h2g2gh) and
tr(h2ghg2) in the following way:

tr(h2g2gh) = 1
2(tr(h2g2gh)+ tr(h2ghg2))+ 1

2(tr(h2g2hg)− tr(h2ghg2))

= 1
2(tr(h2g2hg)+ tr(h2ghg2))+ 1

2T5(g, h),

tr(h2ghg2) = 1
2(tr(h2g2hg)+ tr(h2ghg2))− 1

2T5(g, h). (4.11)

By Lemma 4.3the sum tr(h2g2hg)+ tr(h2ghg2) can be expressed as a polynomial in
invariants of lower order.

• k = 7: there are two types of non-trivial invariants in this case:

1. tr(higjhlgm), i+ j + l+m = 7. If one of the powersi, j, l, m, is equal to 3 or
more, we can decrease the order by an appropriate substitution in Eq.(4.7). Next,
we observe that there are only two possible cases when all powersi, j, l, m are
smaller than 3, namely tr(h2g2h2g) and tr(h2g2hg2). Substitutingh→ h2g into
Eq.(4.6)we obtain:

tr(h2g2h2g) = tr(g · h2g · h2g)

= tr(g · h2g)tr(h2g)− tr(g · h2g)tr(g)+ tr(g2 · h2g).

Analogously we deal with tr(h2g2hg2).
2. tr(h2ghghg), tr(g2hghgh). By Lemma 4.2we can express tr(h2ghghg) = tr(h ·

(hg)3) in terms of tr(h · (hg)2), tr(h · (hg)), tr(h) and tr(hg). For tr(g2hghgh), we
get an analogous expression.

Finally, byLemma 4.3, T5(g, h) is purely imaginary and (T5(hg))2 can be expressed as
a polynomial inT1, T2, T3, T4, so only the sign ofT5 remains undetermined.�

5. The configuration space forN = 1

Applying the theory outlined above is trivial forN = 1: fromLemma 4.1we immediately
get that the orbit space is uniquely characterized by the trace function, because it generates
the algebra of invariants. Here, we will explicitly find the image of the Hilbert mapping

ρ : SU(3)/AdSU(3)→ C ∼= R
2,

which is simply given by the trace function,ρ = tr.
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Fig. 1. Hypocycloid.

First, observe that the set of possible values of tr(g), is given by the sum of the eigenvalues
of g:

tr(g) ≡ T (α, β) = eiα + eiβ + e−i(α+β), α, β ∈ [0,2π[. (5.1)

If gbelongs to a non-generic orbit of type 2 or 3 inTheorem 3.1, then at least two eigenvalues
are equal. Thus, settingα = β we obtain a curve,

[0,2π[� α 	→ T (α) = 2 eiα + e−2iα ∈ C, (5.2)

which turns out to be a hypocycloid, seeFig. 1. We defineD as the compact region enclosed
by this curve. We will show thatD coincides with the image of the Hilbert mappingρ. For
this purpose we first prove the following

Lemma 5.1. Any complex numberT ∈ C can be presented in the following form:

T = s eiθ + e−2iθ, (5.3)

wheres ∈ R, θ ∈ [0, π[.

Proof. It is sufficient to show that the mapping

R× [0, π[� (s, θ) 	→ φ(s, θ) := s eiθ + e−2iθ ∈ C

is surjective. DenotingT = t1+ it2 we have:

t1 = s cosθ + cos 2θ, t2 = s sinθ − sin 2θ. (5.4)
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We show that for givent2, t1 runs over the whole real axis. Fort2 �= 0 (sinθ �= 0), we obtain
from the second equation in(5.4):

s = t2+ sin 2θ

sinθ
.

Substituting this into the first equation of(5.4), we gett1 as a function ofθ:

t1(θ) = t2+ sin 2θ

sinθ
cosθ + cos 2θ.

The limits at the boundaries are:

lim
θ→0+

t1(θ) = sgn(t2) · ∞, lim
θ→π−

t1(θ) = −sgn(t2) · ∞.

The functionθ → t1(θ) is continuous over the interval ]0, π[, so it takes all mean values.
This means that for givent2 �= 0, t1(]0, π[) = R.

For t2 = 0 we haveθ = 0. Then, the first of Eq.(5.4)yieldst1 = s+ 1. �

Observe that by substituting (α, β) → (θ + φ, θ − φ) formula(5.1) can be rewritten in
the form

T (φ, θ) = ei(θ+φ) + ei(θ−φ) + e−2iθ,

yielding

T (φ, θ) = (eiφ + e−iφ)eiθ + e−2iθ = 2 cosφ eiθ + e−2iθ = s eiθ + e−2iθ,

where we have denoteds := 2 cosφ. Thus, in the parametrization(5.3)we have

D = {T (s, θ) = s eiθ + e−2iθ ∈ C : (s, θ) ∈ [−2,2]× [0, π[}

and

∂D = {T (s, θ) = s eiθ + e−2iθ ∈ C : θ ∈ [0, π[, s = 2 ors = −2}.

But

T (−2, θ) = −2 eiθ + e−2iθ = 2 ei(θ+π) + e−2i(θ+π) = T (2, θ + π),

and, whence,∂D coincides with the hypocycloid defined above,

∂D = {T (θ) = 2 eiθ + e−2iθ ∈ C : θ ∈ [0,2π[}.
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One easily checks that in terms ofx = �(T ) andy = �(T ), D is given by

D = {x+ iy ∈ C : 27− x4− 2x2y2− y4+ 8x3− 24xy2− 18x2− 18y2 ≥ 0}.
(5.5)

Theorem 5.2. LetT ∈ C and consider the equation

λ3− Tλ2+ T̄ λ− 1= 0. (5.6)

Its rootsλ1, λ2, λ3 obey

|λ1| = |λ2| = |λ3| = 1, λ1+ λ2+ λ3 = T, λ1λ2λ3 = 1, (5.7)

if and only ifT ∈ D. Consequently, tr(SU(3))= D.

Proof. UsingLemma 5.1we can substituteT (s, θ) = s eiθ + e−2iθ into Eq.(5.6):

λ3− (s eiθ + e−2iθ)λ2+ (s e−iθ + e2iθ)λ− 1= 0.

It is easy to check thatλ1 = e−2iθ is a root of this equation. Thus, we can rewrite it in the
form:

(λ− e−2iθ)(λ2− s eiθλ+ e2iθ) = 0.

Let us find the two remaining solutions. For|s| ≤ 2 (T ∈ D) we obtain:

λ2,3 = s± i
√

4− s2

2
eiθ, |λ2,3|2 = s2+ 4− s2

4
= 1. (5.8)

For |s| > 2 we get:

λ2,3 = s±√s2− 4

2
eiθ, |λ2,3|2 =

(
s2±√s2− 4

2

)2

�= 1.

One can check that the sum and the product of roots have the above properties (in both
cases).

Finally, recall that the characteristic polynomial of any SU(3)-matrix is of the form
(2.9), with eigenvalues uniquely given as roots of this polynomial. Thus, we have shown
that the numbers{λ1, λ2, λ3} are eigenvalues of the characteristic equation of an SU(3)-
matrix g and(5.6) coincides with the characteristic equation ofg if and only if tr(g) ∈ D,
so tr(SU(3))= D. �

To summarize, combiningTheorems 3.1 and 5.2we get the following lemma.

Corollary 5.3. For N = 1, the reduced configuration spaceĈΛ is isomorphic toD and
contains three orbit types characterized by the following conditions:



152 S. Charzy´nski et al. / Journal of Geometry and Physics 55 (2005) 137–178

1. g has three different eigenvalues⇔ tr g lies insideD,
2. g has exactly two different eigenvalues⇔ tr g lies on the boundary ofD, minus the

corners,
3. g ∈ Z⇔ tr g is one of the three corners on the boundary ofD.

6. The configuration space forN = 2

6.1. Strata in terms of invariants

We define a mapping

ρ = (ρ1 · · · ρ9) : G2 −→ R
9

by

ρ1(g, h) := �(T1(g, h)) = �(tr(g)), (6.1)

ρ2(g, h) := �(T1(g, h)) = �(tr(g)), (6.2)

ρ3(g, h) := �(T2(g, h)) = �(tr(h)), (6.3)

ρ4(g, h) := �(T2(g, h)) = �(tr(h)), (6.4)

ρ5(g, h) := �(T3(g, h)) = �(tr(hg)), (6.5)

ρ6(g, h) := �(T3(g, h)) = �(tr(hg)), (6.6)

ρ7(g, h) := �(T4(g, h)) = �(tr(hg)), (6.7)

ρ8(g, h) := �(T4(g, h)) = �(tr(hg2)), (6.8)

ρ9(g, h) := �(T5(g, h)) = �(tr(h2g2hg)− tr(h2ghg2)). (6.9)

By Theorem 4.4, theρi constitute a set of generators of the algebra of invariant polynomials
onG2 with respect to the adjoint action ofG. According to[16], the mappingρ induces a
homeomorphism ofX := G2/AdG onto the image ofρ in R

9. The set{ρi} of generators
is, byTheorem 4.4, subject to a relation, given inAppendix B. We rewrite this relation in
terms of the canonical coordinates{xi} onR

9 by substituting

tr(g) = x1+ ix2, tr(h) = x3+ ix4,

tr(hg) = x5+ ix6, tr(hg2) = x7+ ix8

and

�(tr(h2g2hg)− tr(h2ghg2)) = x9

into its right-hand side. ByLemma 4.3, the resulting polynomialI0(x1, . . . , x8) is real of
order 8 (it is of order 4 in every variablex1, . . . , x8). Thus, the relation defines a hypersurface
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Z1 ⊂ R of codimension 1 defined by

Z1 := {(x1, . . . , x9) ∈ R
9 : I0(x1, . . . , x8) = x2

9}

and the imageρ(X) is a subset ofZ1. On the other hand, by simple dimension counting we
know thatX is eight-dimensional. We conclude that there cannot exist further independent
relations between generatorsTi. Thus,ρ(X) is an eight-dimensional compact subset ofZ1.
As already mentioned before, in order to identifyρ(X) explicitly, one has to find a number of
inequalities between the above invariants. A full solution of this problem will be presented
in a separate paper[22].

Next, letXi denote the stratum ofG2/AdG corresponding to orbit typei. We are going to
characterize eachXi in terms of the above invariants. We will find a hierarchy of relations:
passing from one stratum to a more degenerate one, one has to add some new relations to
those which are already fulfilled. This way we obtain a sequence of algebraic surfaces,

Z1 ⊃ Z2 ⊃ Z3 ⊃ Z4 ⊃ Z5,

characterizing the orbit types. EveryZi has the property that the image ofXi under the
mappingρ is a subset ofZi having the dimension ofZi.

According toTheorem 3.2, a pair (g, h) belongs to a non-generic stratum, i.e., it has
orbit type 2 or higher, iffg andh have a common eigenvector. The following lemma is due
to Volobuev[23].

Lemma 6.1. The matrices g and h have a common eigenvector if and only if the following
three relations are simultaneously satisfied:

T5(g, h) = 0, (6.10)

[g,C + C−1] = [h,C + C−1] = 0, (6.11)

whereC := hgh−1g−1 denotes the group commutator.

Proof. If x is a common eigenvector ofg andh thenx is an eigenvector of the commutator
C with eigenvalue 1. Then the other eigenvalues ofC areλ andλ, for someλ obeying
|λ|2 = 1. In particular, tr(C) is real. Expressing tr(C) in terms of generators we obtain

tr(hgh−1g−1) = 1

2
(|tr(g)|2+ |tr(h)|2+ |tr(hg)|2+ |tr(hg2)|2+ |tr(g)tr(hg)|2− 3

+ T5(g, h))−�(tr(g)tr(h)tr(hg))−�(tr(g)tr(hg)tr(hg2)). (6.12)

It follows

�(tr(C)) = 1

2i
T5(g, h), (6.13)

hence(6.10). Furthermore, the subspaceEorthogonal tox is an eigenspace of the Hermitean
matrixC + C−1 with eigenvalueλ+ λ̄. Then [g,C + C−1]x = 0 and [g,C + C−1]E = 0,
hence(6.11). Conversely, assume that(6.10) and (6.11)are satisfied. According to(6.13),
then tr(C) is real. Due toLemma 5.1, we can write tr(C) = s eiθ + e−2iθ. The rhs is real
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iff s = 2 cosθ. Then the reconstruction formula(5.8) for the eigenvalues ofC from tr(C)
implies thatC has an eigenvalue

λ3 = 2 cosθ − i
√

4− 4 cos2 θ

2
eiθ = (cosθ − i sinθ) eiθ = 1.

If this eigenvalue is degenerate thenC = 1, i.e.,gandhcommute and therefore have a com-
mon eigenvector (even a common eigenbasis). If the eigenvalueλ3 = 1 is non-degenerate
then 2 is a non-degenerate eigenvalue ofC + C−1. Let x be a corresponding eigenvector.
According to(6.11),

[g,C + C−1]x = 2gx− (C + C−1)gx = 0,

i.e.,gx is again an eigenvector ofC + C−1 with eigenvalue 2. It follows thatx is an eigen-
vector ofg and, similarly, ofh. �

In terms of invariants, relation(6.11)can be written as

tr([g,C + C−1] · [g,C + C−1]†) = 0, (6.14)

tr([h,C + C−1] · [h,C + C−1]†) = 0. (6.15)

We omit the lengthy expressions for these equations in terms of generators. We only stress
that they do not depend onT5. Thus, again using the canonical coordinate system, we obtain
two polynomialsI1(x1, . . . , x8) andI2(x1, . . . , x8), which vanish on the non-generic strata:

Z2 := {(x1, . . . , x9) ∈ Z1 : x9 = 0, I1(x1, . . . , x8) = 0, I2(x1, . . . , x8) = 0}.

The definition ofZ1 implies that conditionx9 = 0 is equivalent toI0(x1, . . . , x8) = 0, so
Z2 can be equivalently viewed as a subset ofR

8 given by equationsI0 = 0, I1 = 0 and
I2 = 0. The image of the generic stratumX1 under the mapρ then is contained inZ1 \ Z2.
Hence, insideρ(X), it is given by the inequalities

I0 > 0 or I1 > 0 or I2 > 0.

One can pass to a set of reduced (with respect to their degree) polynomials{I0, I
R
1 , IR

2 },
IR
1 := 1

2I1+ I0, (6.16)

IR
2 := 1

2I2+ I0, (6.17)

which generate the same ideal in the polynomial algebra, seeAppendix Cfor their concrete
expressions.

The set of orbits of type 3 or higher consists of pairs of commuting matrices. The
commutativity of a pairg, h can be expressed in terms of invariants as follows:

tr(hgh−1g−1)− 3= 0.
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Taking the imaginary part yields, according to(6.13), T5 = 0. Denoting

I3 = �(tr(hgh−1g−1)− 3),

we obtain

I3 = 0.

I3 can be expressed in terms ofT1, . . . , T4, and in terms of canonical coordinates it takes
the form

I3(x1, . . . , x8) = x2
1 x2

5 + x2
1 x2

6 + x2
2x

2
5 + x2

2 x2
6 − 2x1x5x7− 2x1x5x3− 2x1x6x8

−2x1x6x4− 2x2x5x8+ 2x2x5x4+ 2x2x6x7− 2x2x6x3+ x2
1

+ x2
2 + x2

5 + x2
6 + x2

7 + x2
8 + x2

3 + x2
4 − 9.

Then, the image of the stratumX3 under the mappingρ is a subset of

Z3 := {(x1, . . . , x9) ∈ Z2 : I3(x1, . . . , x8) = 0}.

Since�(tr(hgh−1g−1)− 3)≤ 0, the image of the stratumX2 underρ is given, as a subset
of ρ(X), by the following equations and inequalities

I0 = 0, I1 = 0, I2 = 0, I3 < 0.

The set of orbits of type 4 or higher consists of commuting pairs with a common two-
dimensional eigenspace. This implies that both matrices and all their products have de-
generate eigenvalues. The invariantsTi, i = 1, . . . ,4, are trace functions of products of
SU(3)-matrices, so they take values inD, seeTheorem 5.2. Thus, byCorollary 5.3, the
values of all invariantsTi, i = 1, . . . ,4, computed on degenerate elements have to belong
to ∂D. The polynomial defining this boundary has the following form, see(5.5):

B(x1, x2) := 27− x4
1− 2x2

1 x2
2 − x4

2+ 8x3
1− 24x1 x2

2 − 18x2
1 − 18x2

2.

Thus, we have

Z4 := {(x1, . . . , x9) ∈ Z3 : B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0}.

Accordingly, the image of the stratumX3 under the mapρ is given, as a subset ofρ(X), by
the relations

I0 = 0, I1 = 0, I2 = 0, I3 = 0

and the inequalities

B(x1, x2) > 0 or B(x3, x4) > 0 or B(x5, x6) > 0 or B(x7, x8) > 0.
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Finally, the subset of orbits of type 5 consists of pairs of matrices belonging toZ. They
fulfill |tr(g)| = |tr(h)| = 3, so we have

Z5 := {(x1, . . . , x9) ∈ Z4 : x2
1 + x2

2 − 9= 0, x2
3 + x2

4 − 9= 0}

and the image of the stratumX4 under the mapρ is given, as a subset ofρ(X), by

I0 = I1 = I2 = I3 = B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0

and

x2
1 + x2

2 − 9 < 0 or x2
3 + x2

4 − 9 < 0.

6.2. Geometric structure of strata

In this section we give a description of the strata in terms of subsets and quotients of
G = SU(3) and calculate their dimensions. We use the following notation. LetH be a
subgroup ofG. Then

N(H) := normalizer ofH in G, G2
H := set of pairs (g, h) with stabilizerH,

G2
(H) := set of pairs (g, h) invariant underH,

G2
[H ] := set of pairs (g, h) of type [H ].

We obviously haveG2
H ⊂ G2

(H) andG2
H ⊂ G2

[H ] . Since we have labelled the orbit types [H ]

by i = 1, . . . ,5, we denote the strataG2
[H ] byG2

i . Moreover, in what follows, the symbol\
always means taking the set theoretical complement, whereas/ means taking the quotient.

For orbit type 5,Theorem 3.2immediately yields that the corresponding stratum is

X5 = Z× Z.

It consists of nine isolated points.
For the remaining orbit types, recall from the basic theory of Lie group actions[17]

that the projectionπi : G2
i → Xi is a locally trivial fibre bundle with typical fibreG/H

associated with theN(H)/H-principal bundleG2
H → Xi, which is naturally embedded

into the associated bundle. HereH is a representative of the conjugacy classi and we have
the following diffeomorphism

Xi
∼= G2

H/N(H)/H, (6.18)

whereN(H)/H is the right coset group acting by inner automorphisms onG2
H . Thus, for

each orbit type we have to choose a representative and then compute the rhs of(6.18).
We start with orbit type 4. As a representative, we choose the subgroup(3.2). Let us

denote it byU(2)1. We have

G2
U(2)1 = G2

(U(2)1)\Z× Z
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and

G2
(U(2)1) = C(U(2)1)× C(U(2)1) = U(1)1× U(1)1, (6.19)

whereC(·) denotes the centralizer inG andU(1)1 denotes the subgroup(3.3). Hence,

G2
U(2)1 = U(1)1× U(1)1\Z× Z.

SinceU(2)1 andU(1)1 centralize each other, their normalizers coincide. Since the only way
in whichN(U(1)1) can act onU(1)1 is by a permutation of the entries, it must act trivially.
It follows

N(U(2)1) = N(U(1)1) = C(U(1)1) = U(2)1,

and the factorization in(6.18)is trivial. Therefore,(6.18)yields

X4 ∼= U(1)1× U(1)1\Z× Z.

The dimension ofX4 is 2.
As a representative for orbit type 3 we choose the subgroup(3.1)of diagonal matrices.

Let us denote it byT . The setG2
T consists of the pairs that are invariant underT minus those

that are of orbit type 4 or higher, i.e., that are conjugate to a pair invariant underU(2)1:

G2
T = G2

(T )\
⋃

g∈G
gG2

(U(2)1) g
−1

 .

We have

G2
(T ) = C(T )× C(T ) = T × T (6.20)

and, from formula(6.19),

gG2
(U(2)1)g

−1 = g(U(1)1× U(1)1)g−1 = (gU(1)1g
−1)× (gU(1)1g

−1).

Subtraction of this subset fromT × T is only non-trivial ifgU(1)1g−1 ⊆ T . The subgroups
arising this way areU(1)1 as well as

U(1)2 = {diag(β, α, β) : α, β ∈ U(1), β2 = ᾱ},
U(1)3 = {diag(β, β, α) : α, β ∈ U(1), β2 = ᾱ}.

Thus,

G2
T = T × T\

(
3⋃

i=1

U(1)i × U(1)i

)
.
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The quotientN(T )/T is the Weyl group ofG = SU(3), isomorphic to the permutation
groupS3. Hence,

X3 =
(

T × T\
(

3⋃
i=1

U(1)i × U(1)i

))
/S3,

whereS3 acts on the elements ofT by permuting the entries. The dimension of the stratum
X3 is 4. Note that if we take the quotient (T × T )/S3, also the points of orbit type 4 and 5
are factorized in the proper way. One can make this precise by saying that (T × T )/S3 is
isomorphic, as a stratified space, to the subspace

X3 ∪X4 ∪X5 ⊆ X = G2/AdG.

As we will see below, this is not true in general.
Next, consider orbit type 2. As a representative, we choose the subgroupU(1)1, given

by (3.3). Using an argument analogous to that for orbit type 3, together with formula(6.20)
andC(U(1)1) = U(2)1, we find

G2
U(1)1 = U(2)1× U(2)1\

⋃
g∈G

g(T × T )g−1

 .

A pair (g, h) ∈ U(2)1× U(2)1 is conjugate to an element ofT × T iff g andh belong to
the same maximal toral subgroup inU(2)1. Thus,

G2
U(1)1 = U(2)1× U(2)1\

⋃
T̃

T̃ × T̃

 ,

where the union is over all maximal tori inU(2)1. As for the normalizer, we already know
thatN(U(1)1) = U(2)1, hence we have to factorize byU(2)1/U(1)1 ∼= SU(2), i.e., byU(2)1
modulo its center:

X2 ∼=
U(2)1× U(2)1\

⋃
T̃

T̃ × T̃

 /U(2)1/U(1)1.

We see that this stratum has dimension 5. We remark that in(6.21)it is important to remove
the pairs of higher symmetry, because they would not be factorized in the proper way here.
SinceU(1)1 is the center ofU(2)1, we get

X2 ∼=
U(2)1× U(2)1\

⋃
T̃

T̃ × T̃

 /U(2)1. (6.21)
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Moreover,
⋃

T̃
T̃ × T̃ contains all non-generic orbit types of theU(2)1-action. Hence, the

rhs of (6.21) is isomorphic to the generic stratum of the orbit space of the action of the
abstract Lie groupU(2) by diagonal conjugation onU(2)× U(2), i.e.,

X2 ∼= ((U(2)× U(2))/U(2))gen. (6.22)

One option to analyze this quotient is to restrict the action to the subgroup SU(2)⊂ U(2)
and to rewrite the two factorsU(2) using the Lie group isomorphism

U(2)∼= (U(1)× SU(2))/Z2,

thus obtaining

(U(2)× U(2))/U(2)∼= (U(1)× U(1)× ((SU(2)× SU(2))/SU(2)))/(Z2× Z2).

Here the quotient (SU(2)× SU(2))/SU(2) is known as the “pillow”. It consists of a three-
dimensional stratum (corresponding to the interior), a two-dimensional stratum (the bound-
ary minus the four edges) and a zero-dimensional stratum (the four edges).

Another option is to apply an algorithm which provides a decomposition of quotients of
diagonal (or joint) actions on direct product spaces into quotients of the individual factors.
Since we will use this algorithm again to describe the generic stratumX1 below, we will
explain it in some generality. LetH be a Lie group acting on a manifoldM and consider
the diagonal action ofH on M ×M (one can easily generalize the procedure to diagonal
action onM1× · · · ×Mn). In what follows, we denote the sets of orbit types of the action
of H onM, of a subgroupK ⊆ H onM and ofH on M ×M byO(M,H), O(M,K) and
O(M ×M,H), respectively. We start with decomposing

(M ×M)/H =
⋃

[K]∈O(M,H)

(M[K] ×M)/H.

If two pairs (x1, x2), (y1, y2) ∈ MK ×M ⊂ M[K] ×M are conjugate underh ∈ H , then
conjugation of the stabilizer ofx1 by h yields the stabilizer ofy1. Since both are equal to
K, h is in the normalizer ofK in H, h ∈ N(K). Thus,

(M[K] ×M)/H = (MK ×M)/N(K),

for some fixed representativeK of the orbit type [K]. Factorization byN(K) can be achieved
by first factorizing byK and then byN(K)/K. SinceK acts trivially on the factorMK, we
obtain

(M ×M)/H =
⋃

[K]∈O(M,H)

(MK × (M/K))/N(K)/K. (6.23)

We decomposeM/K by orbit types of theK-action onM:

M/K =
⋃

[K′]K∈O(M,K)

(M/K)[K′]K . (6.24)
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Here [K′]K denotes the conjugacy class of the subgroupK′ ⊆ K in K. Inserting(6.24)into
(6.23), we obtain

(M ×M)/H =
⋃

[K]∈O(M,H)

MK ×
 ⋃

[K′]K∈O(M,K)

(M/K)[K′]K

 /N(K)/K.

(6.25)

Consider, on the other hand, the decomposition of (M ×M)/H by orbit types,

(M ×M)/H =
⋃

[L]∈O(M×M,H)

((M ×M)/H)[L] .

A representative of the rhs of(6.25)is given by (x, y), wherex ∈ MK andy can be chosen
such that it has orbit typeK′ under the action ofK. The stabilizer of this pair under the
action ofH is given by intersecting the stabilizer ofx under the action ofH, which isK,
with the stabilizer ofy under the action ofH. The intersection yields the stabilizer ofy
under the action ofK, which isK′. Hence, the stabilizer of (x, y) under the action ofH
is K′ and the orbit type is [K′], where the conjugacy class is taken inH. Thus, for every
[L] ∈ O(M ×M,H), we have

((M ×M)/H)[L] =
⋃

[K]∈O(M,H)

MK ×

 ⋃
[K′]K∈O(M,K)

[K′]=[L]

(M/K)[K′]K


 /N(K)/K.

(6.26)

At this stage, the equality sign just means bijective correspondence on the level of abstract
sets. Of course, this can be made more precise by saying how the individual manifolds on
the rhs are glued together to build up the manifold on the lhs. Here we do not elaborate on
this, for details we refer to[22].

Let us apply(6.26)to the quotient given by(6.22), i.e. to the caseM = H = U(2) with
conjugate action. Representatives of orbit types of theU(2)-action onU(2) areK = U(2) and
K = T , whereT denotes the subgroup ofU(2) consisting of diagonal matrices (obviously,
if we identify U(2) with the subgroupU(2)1 of SU(3), this is consistent with the notation
T used above). Representatives of orbit types of theK-action onU(2) areK′ = U(2),T for
K = U(2) andK′ = T , U(1) for K = T . HereU(1) denotes the center ofU(2). Hence, the
only piece in the decomposition(6.26)that belongs to the generic stratum of theU(2)-action
onU(2)× U(2) (orbit type [U(1)]) is that labelled by the subgroupsK = T andK′ = U(1).
The first factor of this piece is

U(2)T = T \ U(1),

the second one

(U(2)/T )[U(1)]T = (U(2)/T )gen.
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The quotient groupN(K)/K = N(T )/T is the Weyl group ofU(2). It is isomorphic to the
permutation groupS2 and can be represented onU(2) by conjugation by the permutation
matrix[

0 1

1 0

]
.

Of course, on the first factor this amounts to interchanging the entries. Thus, we end up
with

X2 ∼= ((U(2)× U(2))/U(2))gen= ((T \ U(1))× (
U(2)/T )gen)/S2.

Clearly, (U(2)/T )gen can be further analyzed, in a similar way as above.
Finally, consider the generic stratumX1. Again, we apply(6.26), where nowM = H =

G = SU(3) with conjugate SU(3)-action. Representatives of orbit types of theG-action on
GareK = G, U(2)1, andT . ForK = G, the orbit types of theK-action onGare again [G],
[U(2)] and [T ], hence these pieces do not contribute toX1. For K = U(2)1 andK = T ,
theK-action onG has one orbit type represented byZ. For both actions, this orbit type
is the generic one. Thus, forX1, the decomposition(6.26)consists of one piece labelled
by the subgroupsK = U(2)1 andK′ = Z and one piece labelled byK = T andK′ = Z.
Computing these pieces we obtain

X1 = (U(1)1 \ Z)× (G/U(2)1)gen∪
((

T\
(

3⋃
i=1

U(1)i

))
× (G/T )gen

)
/S3,

where the action of the Weyl groupS3 on G can be represented by conjugation by the
3× 3-permutation matrices. These are generated, e.g., by1 0 0

0 0 1

0 1 0

 ,

0 1 0

1 0 0

0 0 1

 .

(Notice that the permutation matrices of negative sign have determinant−1, hence they are
not in SU(3).) On the first factor,S3 acts by permuting the entries. We note again that the
quotients (G/U(2)1)gen and (G/T )gen can be further analyzed.

6.3. Representatives of orbits

As above, we denote strata byG2
i ⊂ G2, and the corresponding pieces of the strati-

fied orbit space byXi = G2
i /AdG ⊂ G2/AdG, i = 1, . . . ,5. In this subsection we present

representatives for each orbit type. More precisely, we definelocal cross sections

Xi ⊃ Ui � [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2
i ,
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for each bundle

πi : G2
i → Xi.

Here,Ui denotes a dense subset ofXi. For that purpose, we use a system of local trivializa-
tions of SU(3), viewed as an SU(2)-principal bundle overS5, seeAppendix A.

6.3.1. The generic stratum
The projectionπ1 : G2

1 → X1 of the generic stratum is a locally trivial principal fibre
bundle with structure groupG/Z. Using arguments developed in[24] one can prove that
this bundle is non-trivial and that one can find a system of local trivializations (respectively
local cross sections), defined over a covering ofX1 with open subsets, which are all dense
with respect to the natural measure (the one induced by the Haar-measure).

Proposition 6.2. There exists a local cross section

X1 ⊃ U1 � [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2
1,

of the generic stratum withsgiven by

s1 =

λ1 0 0

0 λ2 0

0 0 λ3

 , s2 =

 a −δ−1b†

b δ
(

1− bb†

1+|a|
)
×

1 0 0

0 c d

0 −d̄ c̄

 , (6.27)

where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1, b =
[
b1

b2

]
, b1, b2 ∈ R+,

|a|2+ b2
1 + b2

2 = 1, a = |a|δ−2, |c|2+ |d|2 = 1. (6.28)

Proof. Let

X1 ⊃ U1 � [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2
1

be a local cross section, withU1 dense inX1. Since AdG acts (pointwise) on this cross
section, we can fix the gauge by bringings to a special form. Sinces1 ands2 are in generic
position onU1, they have no common eigenvector and at least one element of this pair, say
s1, has three different eigenvalues. Thus, on this neighborhood, we can fix the gauge in
two steps: first, we diagonalizes1 and next we use the stabilizer of this diagonal element
to bring s2 to a special form. Sinces1 ands2 have no common eigenvector, this fixes the
(remaining) stabilizer gauge completely (up toZ3). Thus, we can assume thats1 is diagonal,
with eigenvalues ordered in a unique way, and thats2 has the form, defined by the cross
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section(A.13) in Appendix A,

s2 =

 a −δib
†

b δ−1
i

(
1− bb†

1+|a|
)
×

1 0

0 S

 , S ∈ SU(2). (6.29)

Let

π−1
1 (U1) � (s1, s2) 	→ f (s1, s2) ∈ G

belong to the stabilizer ofs1. Sinces1 is diagonal,f can be written in the form

f =

e−i(α+β) 0 0

0 eiα 0

0 0 eiβ

 .

The action off on an arbitrary group elementg is given by:g11 g12 g13

g21 g22 g23

g31 g32 g33

→
 g11 e−i(α+2β)g12 e−i(2α+β)g13

ei(α+2β)g21 g22 e−i(β−α)g23

ei(2α+β)g31 ei(β−α)g32 g33

 . (6.30)

Thus, we can choose the phasesα andβ in such a way that after transformation withf, the
entriesbi of b occurring in(6.29)are real and positive.�

By the results ofSection 6.1, it is clear that the representativescan be expressed in terms
of invariantsti := Ti(s1, s2), i = 1, . . . ,5. With some effort, one can find these expressions
explicitly. Here, we only sketch how to do that. InSection 5we have already found the
eigenvalues{λ1, λ2, λ3} in terms oft1 = tr(s1). Thus, we are left with calculatings2. For
that purpose, denote the diagonal entries ofs2 by x, y andz. Then, we have

t2 = x+ y + z, t3 = λ1x+ λ2y + λ3z, t4 = λ2
1x+ λ2

2y + λ2
3z.

This is system of linear equations forx, y, z, which can be trivially solved. The second, non-
trivial step consists in expressing the parametersa, b, c, d, δ in terms ofx, y, z, by solving
the set of non-linear equations

x = a, y = δc − δ

1+ |a| (b
2
1c − b1b2d̄),

z = δc̄ − δ

1+ |a| (b1b2d + b2
2c̄), (6.31)

where, of course, relations(6.28)have to be taken into account. It can be shown that this
set of equations has two solutions, corresponding to different parametersb1, b2, d:
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a = x, δ =
√
|a|
a

, c = δ̄y + δz̄

1+ |a| ,

b±1 =
1√
2

[2(c1q1+ c2q2)+ (1− |c|2)(1− |a|2)±
√

∆]1/2,

b±2 =
√

1− |a|2− b2
1, d±1 =

c1b
2
1 − q1

b1b2
, d±2 =

−c2b
2
1 + q2

b1b2
,

where

c1 := Re(c), c2 := Im(c), d1 := Re(d), d2 := Im(d),

q1 := −Re(̄δy − c)(1+ |a|), q2 := −Im(δ̄y − c)(1+ |a|),
and

∆ = [2(c1q1+ c2q2)+ (1− |c|2)(1− |a|2)]2− 4(q2
1 + q2

2).

Next, observe that the matrices described by these two sets of parameters are related,
namely one of them is equal to the transposition of the second one. On the other hand, all
invariantsti, i = 1, . . . ,4, are invariant under transposition of matrices. The two solutions
are distinguished by the value ofT5(s1, s2), which has the property

T5(s1, s2) = −T5(sT
1 , s

T
2).

In terms of matrix elements ofs1 ands2, T5 has the following form:

T5(s1, s2) = ±(λ1− λ2)(λ2− λ3)(λ3− λ1)
√

∆.

Thus, calculating the value ofT5(s1, s2) enables us to choose the correct sign in front of the
square root of∆ and to obtain a unique solution.

6.3.2. TheU(1)-stratum
Let s be a local cross section of the (non-trivial) bundleπ2 : G2

2 → X2. There exists
one common eigenvector ofs1 ands2. Assume that it is the first eigenvector ofs1. After
diagonalizings1, the pair (s1, s2) has the following form

s1 =

λ1 0 0

0 λ2 0

0 0 λ3

 , s2 =

det(S)−1 0

0 S

 , (6.32)

whereS ∈ U(2). The stabilizerHs ∼= U(1) of s is given by(3.3). Thus, to obtain a cross
section, we have to fix theS2-action, which permutes the second and third basis vectors and
theHs-action ons2. First, sinceλ2 �= λ3, these eigenvalues can be uniquely ordered, for
example by increasing phase. Next, theHs-action is fixed by requiring that the left lower
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entry ofs2 has to be real and positive. Thus, we get the following local cross section:

s1 =

λ1 0 0

0 λ2 0

0 0 λ3

 , s2 =

 δ−2 0 0

0 δc −δ2d

0 d δc̄

 , (6.33)

where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1, |δ| = 1,

|c|2+ d2 = 1, d ∈ R+.

Again, the representative(6.33)can be expressed in terms of invariants: the eigenvalues
λ1, λ2, λ3 of s1 are given in terms oft1. If λ1 �= λ2, we can proceed in the same way as for
the generic stratum above, i.e., by solving the set of Eqs.(6.31). This way, we obtain the
diagonal componentsδ−2, δc, δc̄ of s2, and we can compute the coefficientsc andδ. There
exist two solutions forc andδ but they describe the same matrix. Ifλ1 = λ2, Eq. (6.31)
imply

(δ−2+ δc) = (x+ y), δc̄ = z,

which can be solved with respect toc andδ2:

δ2 = 2

(x+ y)±
√

(x+ y)2− 4z̄
, c = δz̄.

(There are two values forδ2, but only one of them satisfies the condition|δ|2 = 1. Taking
the square root of the correct one then yields two solutions forδ, but these give the same
matrix.) Finally, one calculates

d =
√

1− |c|2.

6.3.3. TheU(1)× U(1)-stratum
Let sbe a local cross section of the (non-trivial) bundleπ3 : G2

3 → X3. In this case,s1
ands2 can be jointly diagonalized:

s1 =

λ1 0 0

0 λ2 0

0 0 λ3

 , s2 =

 δ1 0 0

0 δ2 0

0 0 δ3

 ,

where

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

|δ1| = |δ2| = |δ3| = 1, δ1δ2δ3 = 1.
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Since there is no common two-dimensional eigenspace, the remainder of the action of the
stabilizerHs ∼= U(1)× U(1) is the permutation groupS3. To fix theS3-action, observe that,
according toCorollary 3.3, either one of the matrices has three different eigenvalues or both
have a pair of degenerate eigenvalues corresponding to distinct eigenspaces. In the first case,
we can fix theS3-action by ordering the three distinct eigenvalues. In the second case, we
can put the unique non-degenerate eigenvalue ofs1 in the first place and establish the order
of the two remaining eigenvectors by ordering the corresponding two distinct eigenvalues
of s2.

Expressings in terms of invariants is then immediate: all eigenvalues can be calculated
in terms of the tracest1 = tr(s1) andt2 = tr(s2). To determine which eigenvalues ofs1 and
s2 correspond to the same eigenvector it is sufficient to know the value oft3 = tr(s1s2). It
can take six values corresponding to the permutations of the eigenvalues ofs2 relative to
those ofs1.

6.3.4. TheU(2)-stratum
Let sbe a cross section of the (trivial) bundleπ4 : G2

4 → X4. Obviously,scan be taken
in the following form:

s1 =

λ1 0 0

0 λ2 0

0 0 λ2

 , s2 =

 δ1 0 0

0 δ2 0

0 0 δ2

 ,

where|λ1| = |λ2| = |δ1| = |δ2| = 1, λ1λ
2
2 = δ1δ

2
2 = 1. For expressing (s1, s2) in terms of

invariants it is sufficient to know the valuest1 and t2, because there is only one possible
order.

6.3.5. TheSU(3)-stratum
Let sbe a cross section of the (trivial) bundleπ5 : G2

5 → X5. Then,

s1 =

λ 0 0

0 λ 0

0 0 λ

 , s2 =

 δ 0 0

0 δ 0

0 0 δ

 ,

define a unique cross section, withλ3 = 1 andδ3 = 1. The traces of both matrices take
one of the following three values: 3 ei(2kπ/3), k = 0,1,2. Thus, expressing them in terms of
invariants is trivial.
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Appendix A. A principal bundle atlas for the SU(3) group manifold

It is well known that the group SU(3) can be viewed as a principal bundle over the sphere
S5 with structure group SU(2),

SU(2) ↪→ SU(3)
π→ S5, (A.1)

with π being the canonical projection from SU(3) onto the right coset space SU(3)/SU(2)∼=
S5. An explicit description ofπ is obtained as follows: any 3× 3 matrix can be written in
the form

g =

 a c†

b B

 , (A.2)

with a ∈ C, b, c ∈ C
2 and a complex 2× 2-matrixB. The condition thatgbelongs toU(3),

namely

gg† = 1= g†g,

translates into the following relations for entries ofg:

|a|2+ ‖b‖2 = 1= |a|2+ ‖c‖2, (A.3)

āb+ Bc = 0= ac + B†b, (A.4)

bb† + BB† = 1= cc† + B†B. (A.5)

We embed the subgroup SU(2) of SU(3) as follows:

SU(2)� S → h =

1 0

0 S

 ∈ SU(3).

Observe that then SU(2) is the stabilizer of the vector

e1 :=

1

0

0

 ∈ S5 ⊂ C
3.

The image of the left action ofg ∈ SU(3) one1 is exactly the first column ofg, which – on
the other hand – is also invariant under right action of SU(2). Thus,π(g) can be identified
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with the first column ofg,

π(g) =

 a

b1

b2

 ∈ S5 ⊂ C
3,

which by(A.3) has norm 1, indeed.
Next, we construct an atlas of local trivializations of the bundle(A.1). Observe first that,

according to(A.5), det(B) = 0 iff ‖b‖ = 1 and, whence, iffa = 0. Thus, let us assumea �= 0
and construct appropriate trivializations of(A.1)over the open setO = {(a, b)|a �= 0} ⊂ S5.
Using the polar decompositionB = AV , whereA > 0,V ∈ U(2), we can rewrite Eq.(A.5)
as follows:

bb† = 1− A2 = Vcc†V †,

yielding

c = −e−iφV †b, φ ∈ R, (A.6)

A2 = 1− bb†. (A.7)

Formulae(A.4) and (A.6)imply

(ā− e−iφA)b = 0,

which means thatb is an eigenvector of the matrixAwith eigenvalue ¯a eiφ. Positivity ofA
implies|a| = ā eiφ.

From Eq.(A.7) we haveA = √1− bb†. SinceA > 0 this formula definesA uniquely.
Obviously, it must be of the form

A = α1+ βbb†. (A.8)

Plugging this into Eq.(A.7) yields

A = 1− 1

1+ |a|bb
†. (A.9)

We conclude that any matrixg ∈ U(3) which fulfils the conditiona �= 0 can be written in
the following form:

g =

 a −eiφb†

b 1− bb†

1+|a|

 ·
1 0

0 V

 , (A.10)

with |a|2+ ‖b‖2 = 1, a = |a|eiφ, V ∈ U(2).
Imposing the condition detg = 1 is equivalent to

detA(a+ eiφb†A−1b) detV = 1. (A.11)
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From(A.3) and (A.9)we have detA = |a| andA−1b = 1
|a|b. Using this, Eq.(A.11) takes

the form:

|a|
(
a+ e+iφ ‖b‖2

|a|
)

detV = 1.

Finally, substitutinga = |a|eiφ and using(A.3), we obtain:

detV = e−iφ = ā

|a| .

We decomposeV = δ−1S, whereS ∈ SU(2) andδ−2 := detV , or δ2 = a
|a| . Of course,

|δ| = 1. Corresponding to the two choices of the square root ofa
|a| , we choose two open

subsetsOi ⊂ O,

O1 :=


 a

b1

b2

 ∈ O : phase(a) ∈] − π, π[

 ,

O2 :=


 a

b1

b2

 ∈ O : phase(a) ∈]0,2π[

 . (A.12)

Then, every elementg ∈ π−1(Oi) ⊂ SU(3), can be uniquely represented as

g = si(π(g)) · hi(g),

with si being two local cross sections of(A.1) overOi,

S5 ⊃ Oi � (a, b) → si(a, b) =

 a −δib
†

b δ−1
i

(
1− bb†

1+|a|
)
 ∈ SU(3), (A.13)

and

hi(g) =

1 0

0 Si(g)

 ⊂ SU(3), Si(g) ∈ SU(2). (A.14)

Thus, corresponding to the two choices of the square root, we obtain two local bijective
mappings

π−1(Oi) � g −→ χi(g) := (π(g), (si(π(g)))−1 · g) ∈ Oi × SU(2).
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Similarly, we choose the following open neighborhood ofa = 0:

O3 :=


 a

b1

b2

 ∈ S5 :

(
b1

b2

)
�=
(

0

0

) .

Then, we find a local cross sections3 overO3 such that

g = s3(π(g)) · h(g) =

 a b†

b −1+ 1−ā

‖b‖2bb
†

 ·
1 0

0 S(g)

 , (A.15)

with S(g) ∈ SU(2), and a local bijective mapping

π−1(O3) � g −→ χ3(g) :=
(
π(g), (s3(π(g)))−1 · g

)
∈ O3× SU(2).

Proposition A.1. The local mappingsχi, i = 1,2,3, form an atlas of local trivializations
of theSU(2)-principal bundle(A.1).

Proof. The proof consists of checking the following obvious statements:

1. The open neighborhoodsOi coverS5,

O1 ∪O2 ∪O3 = S5.

2. The mappings

π−1(Oi) � g −→ χi(g) :=
(
π(g), (si(π(g)))−1 · g

)
∈ Oi × SU(2)

are local diffeomorphisms, fori = 1,2,3.
3. The mappings{χi} are compatible with the bundle structure and with the right group

action:

pri1 ◦ χi = π, (A.16)

(pri2 ◦ χi)(g · g′) = (pri2 ◦ χi(g)) · g′, (A.17)

for i = 1,2,3, withpriα, α = 1,2, denoting the projection on the first, respectively sec-
ond factor ofOi × SU(2). �

Appendix B. The relation for T 25

The relation for the square of the invariantT5, referred to in (4.) ofLemma 4.3, is
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(tr(h2g2hg)− tr(h2ghg2))2

= −27+ tr(h)2tr(h)
2+ 18tr(hg)tr(hg)+ tr(hg)2tr(hg)

2+ tr(hg2)2tr(hg2)
2

+18tr(hg2)tr(hg2)− 4tr(h)3− 4tr(h)
3− 4tr(hg2)3− 4tr(g)

3

−4tr(hg2)tr(h)2tr(hg)− 4tr(hg2)tr(hg)tr(h)
2− 4tr(hg)2tr(hg2)tr(g)

−4tr(hg)
2
tr(hg2)tr(g)− 4tr(hg2)tr(hg)tr(g)2− 6tr(hg2)tr(hg)tr(g)

−4tr(hg)
2
tr(hg2)tr(g)

2+ 8tr(hg2)
2
tr(hg)tr(g)+ tr(hg2)2tr(hg)

2
tr(g)

2

+ tr(hg2)
2
tr(hg)2tr(g)2+ 8tr(hg2)2tr(hg)tr(g)− 4tr(hg)tr(hg2)tr(g)

2

−4tr(hg)2tr(hg2)tr(g)2− 4tr(hg)2tr(h)tr(hg2)+ 12tr(h)tr(hg2)tr(hg)

+12tr(hg2)tr(hg)tr(h)− 4tr(hg2)
2
tr(hg)tr(h)− 4tr(hg2)2tr(h)tr(hg)

−4tr(hg2)
3− 2tr(hg2)tr(hg)tr(hg)tr(hg2)− 2tr(hg2)tr(hg2)tr(h)tr(h)

−4tr(hg)
3− 2tr(hg2)tr(h)tr(h)tr(hg)tr(g)− 4tr(hg)3

−2tr(h)tr(hg)tr(h)tr(hg)+ 18tr(h)tr(h)− 2tr(h)tr(hg)tr(hg)
2
tr(g)tr(g)2

−4tr(hg)tr(h)tr(g)
2− 6tr(hg)tr(h)tr(g)+ 12tr(hg2)tr(h)tr(g)

−4tr(hg2)tr(h)2tr(g)− 4tr(hg2)2tr(h)tr(g)− 4tr(hg2)
2
tr(h)tr(g)

+ tr(g)
2
tr(g)2− 2tr(hg2)tr(hg2)tr(h)tr(hg)tr(g)

−2tr(hg)tr(hg2)tr(hg)
2
tr(g)

2
tr(g)+ 4tr(hg2)tr(hg)tr(hg)tr(hg2)tr(g)tr(g)

−2tr(hg)2tr(hg2)tr(hg)tr(g)tr(g)2+ 2tr(hg)tr(hg2)tr(h)tr(hg)tr(g)
2

+4tr(hg)tr(hg2)tr(h)tr(hg)tr(g)+ 2tr(h)tr(hg)tr(hg2)tr(hg)tr(g)2

+4tr(h)tr(hg)tr(hg2)tr(hg)tr(g)+ 4tr(hg2)tr(hg)tr(h)tr(g)tr(g)

+4tr(h)tr(hg2)tr(hg)tr(g)tr(g)+ 2tr(h)tr(hg2)tr(hg)
2
tr(g)tr(g)

+2tr(hg)2tr(h)tr(hg2)tr(g)tr(g)+ 4tr(hg)3tr(g)tr(g)+ 4tr(hg)tr(hg)tr(g)
3

+4tr(hg)
3
tr(g)tr(g)− 2tr(hg2)tr(hg)tr(h)tr(h)tr(g)− 6tr(hg)tr(hg2)tr(g)

−4tr(hg2)tr(h)
2
tr(g)− 4tr(h)tr(hg)2tr(g)

2− 4tr(h)tr(hg)
2
tr(g)

−4tr(hg)tr(h)tr(g)2− 6tr(hg)tr(h)tr(g)− 4tr(h)tr(hg)2tr(g)

+8tr(h)
2
tr(hg)tr(g)+ 8tr(hg)tr(h)2tr(g)+ tr(h)2tr(hg)

2
tr(g)2

+ tr(hg)2tr(h)
2
tr(g)

2− 4tr(hg2)tr(h)tr(g)
2+ 12tr(hg2)tr(h)tr(g)

−4tr(hg2)tr(h)tr(g)2− 4tr(h)tr(hg)
2
tr(g)2+ 4tr(hg)tr(hg)tr(g)3
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−2tr(hg2)tr(hg2)tr(hg)tr(h)tr(g)− 2tr(hg)2tr(h)tr(hg)tr(g)
2
tr(g)

+4tr(h)tr(hg)tr(h)tr(hg)tr(g)tr(g)− 2tr(h)tr(h)tr(g)tr(g)− 4tr(g)3

−2tr(hg2)tr(hg2)tr(g)tr(g)− 2tr(hg2)tr(hg2)
2
tr(hg)tr(g)

−2tr(hg2)2tr(hg2)tr(hg)tr(g)+ 2tr(hg2)tr(hg)tr(g)
2
tr(g)

+2tr(hg)tr(hg2)tr(g)tr(g)2+ 2tr(hg)tr(hg2)tr(hg)
2
tr(g)

+2tr(hg)2tr(hg2)tr(hg)tr(g)+ tr(hg)2tr(hg)
2
tr(g)

2
tr(g)2

−2tr(hg)2tr(hg)
2
tr(g)tr(g)− 2tr(hg)tr(hg)tr(g)

2
tr(g)2

−8tr(hg)tr(hg)tr(g)tr(g)+ 2tr(h)tr(hg)tr(hg)
2
tr(g)+ 2tr(hg)tr(h)tr(g)

2
tr(g)

+2tr(hg)tr(h)tr(g)tr(g)2+ 2tr(hg)2tr(h)tr(hg)tr(g)− 2tr(h)2tr(h)tr(hg)tr(g)

−2tr(hg)tr(h)tr(h)
2
tr(g)+ 18tr(g)tr(g)− 4tr(h)tr(hg2)tr(hg)

2
.

It can be derived in the following way. Consider the invariant functions tr(hghgghghhggh)
and tr(hghgghhgghgh) of order 12. The sum of them can be expressed in terms of generators
T1, . . . , T5 in two different ways. First, we use the trace identity(2.6)for k = 4 andg1 = gh,
g2 = gg, g3 = hg, g4 = hhgghh to express tr(hghgghghhggh) in terms of traces of lower
order. Next, we use the trace identity(2.6)for k = 4 andg1 = hh, g2 = gh, g3 = gghhgg,
g4 = hg to express tr(hghgghhgghgh). It turns out that in both cases (which are actually
equivalent, because one is obtained from the other by interchangingg with h), we obtain
expressions which can be simplified using standard techniques fromSection 4. The final
expressions in terms of generators do not depend onT5.

On the other hand we observe that the sum

tr(hghgghghhggh)+ tr(hghgghhgghgh)

= tr((hg)2(gh)2(hg)(gh))+ tr((hg)2(gh)(hg)(gh)2)

can be expressed in terms of invariants of lower order using formula(4.9) (we substitute
h→ hg, g→ gh). In this case, we obtain a different formula containingT 2

5 . Taking the
difference of these two expressions yields the above relation.

All calculations described above were made by a computer program written underMaple
8.00. It is worth mentioning that this program automatically generates polynomial expres-
sion in terms of generators for any trace function (at least up to order 12) using only standard
techniques, namely fundamental trace identities and appropriate substitutions in the Cayley
equation.

Finally, let us mention that, once the relation has been found, it can be checked by direct
calculation.
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Appendix C. The polynomialsI0, IR
1 and IR
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2
6x8− 4x2

1x2x
3
6x7+ 4x1x
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2
7 − 6x2

1x
2
6x

2
8 − 8x1x2x

2
3x5x6

+8x1x2x3x4x
2
5 − 8x1x2x3x4x

2
6 − 8x1x2x3x

2
5x8− 8x1x2x3x

2
6x8

+8x1x2x
2
4x5x6+ 8x1x2x4x

2
5x7+ 8x1x2x4x

2
6x7− 8x1x2x

2
5x7x8

+8x1x2x5x6x
2
7 − 8x1x2x5x6x

2
8 + 8x1x2x

2
6x7x8+ 2x4

2x
2
5 + 2x4

2x
2
6 − 2x2

2x
2
3x

2
5

−6x2
2x

2
3x

2
6 + 8x2

2x3x4x5x6− 8x2
2x3x5x6x8+ 8x2

2x3x
2
6x7− 6x2

2x
2
4x

2
5

−2x2
2x

2
4x

2
6 + 8x2

2x4x
2
5x8− 8x2

2x4x5x6x7+ 2x2
2x

4
5+ 4x2

2x
2
5x

2
6 − 2x2

2x
2
5x

2
7

−6x2
2x

2
5x

2
8 + 8x2

2x5x6x7x8+ 2x2
2x

4
6− 6x2

2x
2
6x

2
7 − 2x2

2x
2
6x

2
8 − 4x3

1x3x5

−4x3
1x4x6− 8x3

1x
2
5 − 4x3

1x5x7− 8x3
1x
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1x
2
5 + 4x2

2x
2
5 + 4x2

1x
2
6 + 4x2

2x
2
6 + 2x2x4x

2
6

+2x2
1x

2
5x7− 2x2

2x
2
5x7− 2x2

1x
2
6x7+ 2x2

2x
2
6x7+ 8x1x2x3x5x6+ 2x2

1x3x
2
5

−2x2
2x3x

2
5 + 2x1x3x

2
5 − 2x2x4x

2
5 − 2x2

1x3x
2
6 + 2x2

2x3x
2
6 − 2x1x3x

2
6

+8x1x3x4x6− 8x2x3x4x5+ 6x3x6x8+ 6x4x5x8− 6x3x5x7+ 6x4x6x7

−2x3
1x4x6− 2x1x

2
2x3x5− 2x2

1x2x3x6+ 2x2
1x2x4x5− 2x1x

2
2x4x6+ x2

1x
2
3

+ x2
2x

2
3 − 2x3

1x3x5− 2x3
2x3x6+ 2x3

2x4x5+ 6x2
1x5x

2
6 + 6x2

2x5x
2
6 − 2x2

1x
3
5

−2x2
2x

3
5+ x2

1x
2
4 + x2

2x
2
4 − 18x2

1 − 18x2
2 + 6x1x6x8− 24x1x

2
2 + 8x3

1

+ x4
1x

2
5 − 2x2

1x
2
2 − x4

1− x4
2,
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IR
2 (x1, x2, x3, x4, x5, x6, x7, x8)

= 27− 2x1x
2
3x

2
5 + 4x2x

2
3x5x6− 4x2x

2
4x5x6+ 2x1x

2
4x

2
5 + 2x1x

2
3x

2
6 − 2x1x

2
4x

2
6

+2x2
1x3x5x

2
6 − 2x2

2x3x5x
2
6 − 4x1x2x3x

3
6+ 2x2

1x4x
2
5x6− 2x2

2x4x
2
5x6

+4x1x2x4x
3
5+ 6x1x

2
2x

3
5+ 6x3

1x5x
2
6 − 6x3

2x
2
5x6− 6x2

1x2x
3
6− 2x3

1x
3
5

+2x3
2x

3
6− 18x1x

2
2x5x

2
6 + 18x2

1x2x
2
5x6− 4x1x2x3x

2
5x6+ 4x1x2x4x5x

2
6

+2x2
1x3x

3
5− 2x2

2x3x
3
5+ 2x2

1x4x
3
6− 2x2

2x4x
3
6− 9x2

8 − 9x2
7 − 18x2

3 − 18x2
4

−12x2x6x7+ 2x3
7− 6x7x

2
8 − 9x2

6 − 9x2
5 + 12x1x5x7+ 12x2x5x8

−16x1x2x3x6+ 16x1x2x4x5+ 2x3
5− 6x5x

2
6 − 2x2

3x
2
4 + 8x2

1x3x5− 8x2
2x3x5

+6x1x3x5+ 6x2x3x6− 6x2x4x5+ 8x2
1x4x6− 8x2

2x4x6+ 8x3
3− 24x3x

2
4

−16x2x3x5x6− 16x1x4x5x6− 12x2
1x5x6x8+ 12x2

2x5x6x8+ 8x1x
2
4x5

+4x2
1x3x6x8+ 4x2

2x3x6x8+ 4x2
1x4x6x7+ 4x2

2x4x6x7+ 4x2
1x4x5x8

+4x2
2x4x5x8− 4x1x3x

2
5x7− 4x2x4x

2
5x7+ 6x1x4x6− 8x1x

2
3x5− 8x2x

2
3x6

+8x2x
2
4x6+ 4x2x3x

2
5x8− 4x1x4x

2
5x8+ 4x2x3x

2
6x8− 4x1x4x

2
6x8

−4x2
1x3x5x7− 4x2

2x3x5x7+ 2x3x
2
5x7− 2x3x

2
6x7+ 2x1x3x

2
4x5− 2x2x

2
3x4x5

+2x1x
2
3x4x6+ 2x2x3x

2
4x6− 2x2x3x

2
5x6− 2x1x3x5x

2
6 − 2x1x4x

2
5x6

+2x2x4x5x
2
6 + 4x4x5x6x7+ 4x3x5x6x8+ x2

3x
2
5 + x2

4x
2
5 + x2

3x
2
6 + x2

4x
2
6

+4x1x
2
3x7− 4x1x

2
4x7− 4x2x

2
3x8+ 4x2x

2
4x8+ 2x1x3x

2
7 − 2x1x3x

2
8

+2x2x4x
2
7 − 2x2x4x

2
8 − 4x1x2x4x7+ 4x1x2x3x8− 8x2x3x4x7− 8x1x3x4x8

−4x1x4x7x8+ 4x2x3x7x8− 24x1x2x5x6x7+ 2x2
1x3x7− 2x2

2x3x7

−12x1x3x7− 12x2x4x7+ 12x2x3x8+ 2x2
1x4x8− 2x2

2x4x8− 12x1x4x8

− x2
1x

2
3x

2
5 − x2

2x
2
3x

2
5 − x2

1x
2
4x

2
5 − x2

2x
2
4x

2
5 − x2

1x
2
3x

2
6 − x2

2x
2
3x

2
6 − x2

1x
2
4x

2
6

− x2
2x

2
4x

2
6 + 2x1x

3
3x5− 2x2x

3
4x5+ 2x1x

3
4x6+ 2x2x

3
3x6+ 12x1x6x7x8

+12x2x5x7x8− 12x1x2x
2
5x8+ 12x1x2x

2
6x8+ 4x2

3x5x7− 4x2
4x5x7

−6x1x5x
2
7 + 6x1x5x

2
8 + 6x2x6x

2
7 − 6x2x6x

2
8 + 4x3x6x7x8+ 4x4x5x7x8

+8x3x4x5x8+ 8x3x4x6x7− 3x2
1x

2
5 − 3x2

2x
2
5 − 3x2

1x
2
6 − 3x2

2x
2
6 + 2x3x5x

2
7

+8x2x4x
2
6 + 6x2

1x
2
5x7− 6x2

2x
2
5x7− 6x2

1x
2
6x7+ 6x2

2x
2
6x7− 2x3x5x

2
8

−2x4x6x
2
7 + 2x4x6x

2
8 − 4x2

3x6x8+ 4x2
4x6x8+ 8x1x3x

2
5 − 8x2x4x

2
5

−8x1x3x
2
6 − 4x1x3x

2
6x7− 4x2x4x

2
6x7+ 16x1x3x4x6− 16x2x3x4x5− x4

3
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− x4
4+ x2

3x
2
8 + x2

4x
2
8 + 12x3x6x8+ 12x4x5x8− 2x4x

2
5x8+ 2x4x

2
6x8

−12x3x5x7+ 12x4x6x7− 2x3
1x4x6− 2x1x3x

3
5− 2x2x3x

3
6+ 2x2x4x

3
5

−2x1x4x
3
6− 2x1x

2
2x3x5− 2x2

1x2x3x6+ 2x2
1x2x4x5− 2x1x

2
2x4x6+ x2

3x
2
7

+ x2
4x

2
7 + x2

1x
2
3 + x2

2x
2
3 − 2x3

1x3x5− 2x3
2x3x6+ 2x3

2x4x5+ x2
1x

2
4 + x2

2x
2
4

−9x2
1 − 9x2

2 + 12x1x6x8− 6x1x
2
2 + 2x3

1+ 2x3
1x3x

2
5 − 2x3

1x3x
2
6

−8x1x3x4x5x6− 4x2
1x2x3x5x6− 4x1x

2
2x4x5x6+ 2x2

1x2x4x
2
6 − 2x1x

2
2x3x

2
6

+2x1x
2
2x3x

2
5 − 2x2

1x2x4x
2
5 + 8x1x2x3x4x5− 2x2

1x
2
3x5+ 2x2

2x
2
3x5+ 2x2

1x
2
4x5

−2x2
2x

2
4x5− 2x3

2x4x
2
5 + 2x3

2x4x
2
6 − 4x3

2x3x5x6− 4x3
1x4x5x6− 4x2x3x4x

2
5

+4x2x3x4x
2
6 + 4x1x2x

2
3x6− 4x1x2x

2
4x6+ 4x2

1x3x4x6− 4x2
2x3x4x6.

The polynomialsIR
1 andIR

2 are both inhomogeneous polynomials of total degree 6.IR
1 is

a polynomial of degrees 4, 4, 3, 2, 3, 2, 3, 2 andIR
2 is of degrees 3, 3, 4, 4, 3, 3, 3, 2 in

variablesx1, . . . , x8 respectively.
The non-reduced polynomialsI1 and I2 are both inhomogeneous real polynomial of

degree 8.I1 is of degree 4 in every variablex1, . . . , x8 andI2 is of degree 4 in the variables
x1, x2, x5, x6, x7, x8 and of degree 3 in the variablesx3, x4.
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